## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Diaquadichloridobis[quinazolin-4(1H)-one- $\left.\kappa N^{3}\right]$ nickel(II)

Shirin Shomurotova, ${ }^{\text {a }}$ Kambarali K. Turgunov, ${ }^{\text {b }}$ * Nasir Mukhamedov ${ }^{\text {b }}$ and Bakhodir Tashkhodjaev ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Tashkent State Pedagogical University Named After Nizami, Yusuf Khos Khojib Str 103, Tashkent 100100, Uzbekistan, and ${ }^{\mathbf{b}}$ S. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str 77, Tashkent 100170, Uzbekistan<br>Correspondence e-mail: kk_turgunov@rambler.ru<br>Received 28 April 2012; accepted 30 April 2012<br>Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; $R$ factor $=0.052 ; w R$ factor $=0.139$; data-to-parameter ratio $=12.8$.

In the title complex, $\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Ni}^{\mathrm{II}}$ ion is located on an inversion center and is six-coordinated by two N atoms of 1 H -quinazolin-4-one ligands, two chloride ions and two water molecules. The water molecules are involved in intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are formed between ligands. In addition, weak $\pi-\pi$ interactions are observed between the benzene rings of the ligands [centroid-centroid distance $=3.580$ (3) $\AA$ ]. The intermolecular hydrogen bonds and $\pi-\pi$ interactions lead to the formation of a three-dimensional supramolecular network.

## Related literature

For a $\mathrm{Cd}(\mathrm{II})$ coordination polymer with quinazolin-4(3H)-one, see: Turgunov \& Englert (2010) and for a $\mathrm{Cu}(\mathrm{II})$ coordination compound with quinazolin-4(1H)-one, see: Turgunov et al. (2010).


## Experimental

Crystal data
$\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=457.94$
Monoclinic, $P 2_{1} / C$
$a=6.7800$ (5) A
$b=18.741$ (2) A
$c=6.6106$ (5) $\AA$
$\beta=93.782(8)^{\circ}$
$V=838.14(13) \AA^{3}$
$Z=2$
$\mathrm{Cu} K \alpha$ radiation
$\mu=4.92 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.16 \times 0.16 \times 0.04 \mathrm{~mm}$

## Data collection

Oxford Diffraction Xcalibur Ruby diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.621, T_{\text {max }}=1.000$
3040 measured reflections 1686 independent reflections 1046 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.139$
H atoms treated by a mixture of
$S=0.94$
1686 reflections
132 parameters
2 restraints

## independent and constrained

 refinement$\Delta \rho_{\text {max }}=0.75 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{Cl} 1^{\mathrm{i}}$ | $0.85(4)$ | $2.56(3)$ | $3.371(4)$ | $160(6)$ |
| $\mathrm{O} 1 W-\mathrm{H} 2 W \cdots 1^{\mathrm{ii}}$ | $0.85(5)$ | $1.87(6)$ | $2.641(5)$ | $150(11)$ |
| $\mathrm{N} 1-\mathrm{H} 1 A \cdots 1^{\mathrm{iii}}$ | 0.86 | 2.44 | $3.116(5)$ | 136 |
| $\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{C} 11^{\mathrm{iv}}$ | 0.86 | 2.59 | $3.256(4)$ | 135 |
| $\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1 W$ | 0.93 | 2.42 | $2.958(6)$ | 117 |

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y+1,-z$; (iii) $x-1, y, z$; (iv)
$-x,-y+1,-z$.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA-F7-T185).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5221).

## References

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Turgunov, K. \& Englert, U. (2010). Acta Cryst. E66, m1457.
Turgunov, K., Shomurotova, S., Mukhamedov, N. \& Tashkhodjaev, B. (2010). Acta Cryst. E66, m1680.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

## supplementary materials

Acta Cryst. (2012). E68, m724 [doi:10.1107/S1600536812019381]

# Diaquadichloridobis[quinazolin-4(1H)-one- $\kappa N^{3}$ ]nickel(II) 

Shirin Shomurotova, Kambarali K. Turgunov, Nasir Mukhamedov and Bakhodir Tashkhodjaev

## Comment

In the title compound $\mathrm{Ni}^{\mathrm{II}}$ ion is located on the inversion center and has an octahedral coordination enviroment: two ligands coordinated via N atoms, two chloride ligands and two aqua ligands (Figure 1). The distances between Ni and coordination atoms are the following: $\mathrm{d}(\mathrm{Ni}-\mathrm{N} 3)=2.112(4) \AA, \mathrm{d}(\mathrm{Ni}-\mathrm{Cl})=2.445(1) \AA, \mathrm{d}(\mathrm{Ni}-\mathrm{Ow})=2.084$ (3) $\AA$. In the isostructural $\mathrm{Cu}^{\text {II }}$ complex $\mathrm{Cu}-\mathrm{Ow}$ distance was longer ( $2.512 \AA$ ) because of the Jahn-Teller elongation effect (Turgunov et al., 2010).
The flat quinazolinone ligand is a little tilted in respect to metal-nitrogen vector and the dihedral angle between the least squares plane through the ligand and the metal-halide-water plane amounts to 84.33 (9) ${ }^{\circ}$.
Aqua ligands are involved in intramolecular and intermolecular hydrogen bonding. Intramolecular H-bonding is occurring with carbonyl group of the ligand. An intermolecular H -bonding of aqua and chloride ligands gives raise to chains along [001] (Figure 2). In addition, between ligand and water molecules are formed weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds formed between the organic and chloride ligands link molecular complexes into hydrogen-bonded chains along [100] (Figure 3; Table 1). Weak $\pi-\pi$ ring interactions connect the molecular complexes along [010] and [001] directions. $\left[C g 1 \cdots C g 1^{\mathrm{v}}\right]=3.580 \AA$, where $C g 1=\mathrm{C} 4 \mathrm{AC} 5 \mathrm{C} 6 \mathrm{C} 7 \mathrm{C} 8 \mathrm{C} 8 \mathrm{~A} ;{ }^{\mathrm{v}}=x$, $3 / 2-y, 1 / 2+z]$.

## Experimental

A solution of $23.77 \mathrm{mg}(0.1 \mathrm{mmol})$ of nickel(II) chloride hexahydrate in 1 ml of water was added to a solution of 29.23 $\mathrm{mg}(0.2 \mathrm{mmol})$ of 3 H -quinazolin-4-one in 3 ml of ethanol. The solution allowed to stand at $50^{\circ} \mathrm{C}$ temperature for one week, after which colourless crystals were obtained.

## Refinement

Ligand H atoms were positioned geometrically and treated as riding on their C and N atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 $\AA$ (aromatic), $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$ and were refined with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C}), U_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{N})$. Coordinated water H atoms were found by difference Fourier synthesis and refined isotropically with distance restrains of $0.85 \AA[\mathrm{O} 1 \mathrm{w}-$ $\mathrm{H} 1 \mathrm{w}=0.85(4) \AA, \mathrm{O} 1 \mathrm{w}-\mathrm{H} 2 \mathrm{w}=0.85(5) \AA$.

## Computing details

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).


Figure 1
The molecular structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50\% probability level.


Figure 2
Crystal packing of the title compound viewed along the $\boldsymbol{a}$ direction showing the formation a hydrogen-bonded chain along [001].


## Figure 3

Part of the crystal structure of the title compound showing the formation a hydrogen-bonded chain along [100].

## Diaquadichloridobis[quinazolin-4(1H)-one- $\kappa N^{3}$ ]nickel(II)

## Crystal data

$\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=457.94$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.7800$ (5) $\AA$
$b=18.741$ (2) $\AA$
$c=6.6106$ (5) $\AA$
$\beta=93.782$ ( 8$)^{\circ}$
$V=838.14(13) \AA^{3}$
$Z=2$

## Data collection

Oxford Diffraction Xcalibur Ruby diffractometer
Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 10.2576 pixels $\mathrm{mm}^{-1}$
$\omega$ scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
$T_{\min }=0.621, T_{\max }=1.000$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.139$
$S=0.94$
$F(000)=468$
$D_{\mathrm{x}}=1.815 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 792 reflections
$\theta=4.7-75.6^{\circ}$
$\mu=4.92 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Rhombic plates, colourless
$0.16 \times 0.16 \times 0.04 \mathrm{~mm}$

3040 measured reflections
1686 independent reflections
1046 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=75.9^{\circ}, \theta_{\text {min }}=4.7^{\circ}$
$h=-8 \rightarrow 7$
$k=-23 \rightarrow 13$
$l=-8 \rightarrow 8$

1686 reflections
132 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0729 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.75 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3}
\end{gathered}
$$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Ni1 | 0.5000 | 0.5000 | 0.0000 | $0.0271(3)$ |
| C11 | $0.30215(17)$ | $0.45677(7)$ | $0.27085(17)$ | $0.0340(3)$ |
| O1 | $0.6109(5)$ | $0.66887(19)$ | $0.0800(5)$ | $0.0340(8)$ |
| N1 | $0.0343(5)$ | $0.6502(2)$ | $-0.0692(6)$ | $0.0301(9)$ |
| H1A | -0.0903 | 0.6434 | -0.0945 | $0.036^{*}$ |
| C2 | $0.1533(6)$ | $0.5947(3)$ | $-0.0494(6)$ | $0.0285(10)$ |
| H2A | 0.0971 | 0.5498 | -0.0684 | $0.034^{*}$ |
| N3 | $0.3448(5)$ | $0.5977(2)$ | $-0.0048(5)$ | $0.0272(9)$ |
| C4 | $0.4314(7)$ | $0.6634(3)$ | $0.0282(7)$ | $0.0272(10)$ |
| C4A | $0.3084(7)$ | $0.7271(3)$ | $-0.0011(7)$ | $0.0268(10)$ |
| C5 | $0.3861(7)$ | $0.7962(3)$ | $0.0203(7)$ | $0.0299(10)$ |
| H5A | 0.5200 | 0.8025 | 0.0561 | $0.036^{*}$ |
| C6 | $0.2672(8)$ | $0.8542(3)$ | $-0.0110(7)$ | $0.0348(12)$ |
| H6A | 0.3205 | 0.8999 | 0.0004 | $0.042^{*}$ |
| C7 | $0.0666(8)$ | $0.8454(3)$ | $-0.0599(7)$ | $0.0368(12)$ |
| H7A | -0.0131 | 0.8855 | -0.0793 | $0.044^{*}$ |
| C8 | $-0.0178(8)$ | $0.7785(3)$ | $-0.0805(8)$ | $0.0357(12)$ |
| H8A | -0.1525 | 0.7732 | -0.1134 | $0.043^{*}$ |
| C8A | $0.1054(7)$ | $0.7188(3)$ | $-0.0504(7)$ | $0.0283(10)$ |
| O1W | $0.2955(5)$ | $0.4596(2)$ | $-0.2198(5)$ | $0.0303(7)$ |
| H1W | $0.328(10)$ | $0.463(4)$ | $-0.342(4)$ | $0.08(2)^{*}$ |
| H2W | $0.282(18)$ | $0.4160(17)$ | $-0.189(17)$ | $0.20(6)^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ni1 | $0.0258(5)$ | $0.0247(6)$ | $0.0301(6)$ | $-0.0004(5)$ | $-0.0038(4)$ | $-0.0003(5)$ |
| C11 | $0.0330(6)$ | $0.0362(7)$ | $0.0327(6)$ | $-0.0058(5)$ | $0.0008(4)$ | $0.0007(5)$ |
| O1 | $0.0234(15)$ | $0.029(2)$ | $0.049(2)$ | $-0.0023(15)$ | $-0.0044(14)$ | $-0.0022(17)$ |
| N1 | $0.0206(17)$ | $0.035(2)$ | $0.034(2)$ | $-0.0025(17)$ | $-0.0034(15)$ | $0.0038(19)$ |
| C2 | $0.029(2)$ | $0.031(3)$ | $0.026(2)$ | $0.001(2)$ | $0.0016(18)$ | $0.002(2)$ |


|  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N3 | $0.0273(19)$ | $0.023(2)$ | $0.031(2)$ | $-0.0022(17)$ | $0.0002(15)$ | $0.0001(17)$ |
| C4 | $0.031(2)$ | $0.025(3)$ | $0.025(2)$ | $0.001(2)$ | $0.0043(18)$ | $0.000(2)$ |
| C4A | $0.028(2)$ | $0.026(3)$ | $0.026(2)$ | $0.002(2)$ | $0.0020(18)$ | $0.002(2)$ |
| C5 | $0.036(2)$ | $0.026(3)$ | $0.027(2)$ | $-0.001(2)$ | $-0.0003(19)$ | $0.002(2)$ |
| C6 | $0.048(3)$ | $0.028(3)$ | $0.029(2)$ | $0.001(2)$ | $0.000(2)$ | $0.000(2)$ |
| C7 | $0.050(3)$ | $0.032(3)$ | $0.029(2)$ | $0.017(3)$ | $0.002(2)$ | $0.003(2)$ |
| C8 | $0.032(2)$ | $0.040(3)$ | $0.034(3)$ | $0.011(2)$ | $-0.002(2)$ | $0.001(2)$ |
| C8A | $0.029(2)$ | $0.029(3)$ | $0.027(2)$ | $0.005(2)$ | $0.0014(18)$ | $0.002(2)$ |
| O1W | $0.0299(16)$ | $0.031(2)$ | $0.0292(17)$ | $-0.0041(16)$ | $-0.0033(13)$ | $-0.0022(17)$ |

Geometric parameters ( $A,{ }^{\circ}$ )

| Ni1-O1W | 2.084 (3) | $\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$ | 1.462 (7) |
| :---: | :---: | :---: | :---: |
| Ni1-O1W ${ }^{\text {i }}$ | 2.084 (3) | C4A-C8A | 1.402 (6) |
| Ni1-N3 ${ }^{\text {i }}$ | 2.112 (4) | C4A-C5 | 1.403 (7) |
| Ni1-N3 | 2.112 (4) | C5-C6 | 1.362 (7) |
| Ni1-Cl1 | 2.4451 (12) | C5-H5A | 0.9300 |
| Ni1- $\mathrm{Cl1}^{\text {i }}$ | 2.4451 (12) | C6-C7 | 1.387 (7) |
| O1-C4 | 1.246 (5) | C6-H6A | 0.9300 |
| N1-C2 | 1.317 (6) | C7-C8 | 1.381 (8) |
| N1-C8A | 1.375 (6) | C7-H7A | 0.9300 |
| N1-H1A | 0.8600 | C8-C8A | 1.402 (7) |
| $\mathrm{C} 2-\mathrm{N} 3$ | 1.314 (5) | C8-H8A | 0.9300 |
| C2-H2A | 0.9300 | O1W-H1W | 0.85 (4) |
| N3-C4 | 1.374 (6) | O1W-H2W | 0.85 (5) |
| O1W-Ni1-O1W ${ }^{\text {i }}$ | 180.0 (2) | $\mathrm{O} 1-\mathrm{C} 4-\mathrm{N} 3$ | 121.1 (5) |
| O1W-Nil-N3 ${ }^{\text {i }}$ | 90.21 (15) | $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$ | 120.5 (5) |
| O1W ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{N} 3^{\text {i }}$ | 89.79 (15) | N3-C4-C4A | 118.4 (4) |
| O1W-Ni1-N3 | 89.79 (15) | C8A-C4A-C5 | 118.8 (5) |
| O1W ${ }^{\text {i }}$-Ni1- ${ }^{\text {N3 }}$ | 90.21 (15) | C8A-C4A-C4 | 119.0 (5) |
| N3 ${ }^{\text {i }}$ - Ni1-N3 | 180.0 (2) | C5-C4A-C4 | 122.2 (4) |
| O1W-Nil-Cl1 | 91.05 (11) | C6-C5-C4A | 120.5 (5) |
| O1W ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{Cl} 1$ | 88.95 (11) | C6-C5-H5A | 119.8 |
| N3i-Ni1-Cl1 | 89.91 (11) | C4A-C5-H5A | 119.8 |
| N3-Ni1-Cl1 | 90.09 (11) | C5-C6-C7 | 120.1 (5) |
| O1W-Ni1- $\mathrm{Cl1}^{\text {i }}$ | 88.95 (11) | C5-C6-H6A | 119.9 |
| O1W ${ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{Cl1}^{\text {i }}$ | 91.05 (11) | C7-C6-H6A | 119.9 |
| N3 ${ }^{\text {- }}$ - $\mathrm{Ni} 1-\mathrm{Cl1}^{\text {i }}$ | 90.09 (11) | C8-C7-C6 | 121.6 (5) |
| N3-Ni1-Cl1 ${ }^{\text {i }}$ | 89.91 (11) | C8-C7-H7A | 119.2 |
| $\mathrm{Cl1}-\mathrm{Ni} 1-\mathrm{Cl1}^{\text {i }}$ | 180.00 (6) | C6-C7-H7A | 119.2 |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8 \mathrm{~A}$ | 121.4 (4) | C7-C8-C8A | 118.1 (5) |
| $\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$ | 119.3 | C7-C8-H8A | 120.9 |
| C8A-N1-H1A | 119.3 | C8A-C8-H8A | 120.9 |
| N3-C2-N1 | 125.3 (5) | N1-C8A-C8 | 122.1 (5) |
| N3-C2-H2A | 117.3 | N1-C8A-C4A | 117.2 (4) |
| N1-C2-H2A | 117.3 | C8-C8A-C4A | 120.8 (5) |
| C2-N3-C4 | 118.7 (4) | Ni1-O1W-H1W | 115 (5) |

## supplementary materials

| $\mathrm{C} 2 — \mathrm{~N} 3 — \mathrm{Ni} 1$ | $116.8(3)$ | Ni1—O1W—H2W | $105(8)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 4 — \mathrm{~N} 3 — \mathrm{Ni1}$ | $124.5(3)$ | H1W—O1W—H2W | $110(8)$ |

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$ | $0.85(4)$ | $2.56(3)$ | $3.371(4)$ | $160(6)$ |
| $\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{O} 1^{\mathrm{i}}$ | $0.85(5)$ | $1.87(6)$ | $2.641(5)$ | $150(11)$ |
| $\mathrm{N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{iii}}$ | 0.86 | 2.44 | $3.116(5)$ | 136 |
| $\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl1} 1^{\text {iv }}$ | 0.86 | 2.59 | $3.256(4)$ | 135 |
| $\mathrm{C} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1 W$ | 0.93 | 2.42 | $2.958(6)$ | 117 |

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x, y, z-1$; (iii) $x-1, y, z$; (iv) $-x,-y+1,-z$.

